Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Journal of Southwest Minzu University Natural Science Edition ; 49(2):142-148, 2023.
Article in Chinese | CAB Abstracts | ID: covidwho-20242702

ABSTRACT

Canine parvovirus (CPV), canine coronavirus (CCoV) and canine rotavirus (CRV) are the three main causative viruses of diarrhea in dogs with similar clinical symptoms;thereby it is necessary to establish a high effective molecular detection method for differentiating the above pathogens. By optimizing the primer concentration and annealing temperature, a triple PCR method was established for simultaneous detection of CPV, CCoV and CRV, and then the specificity, sensitivity and repeatability of the method were tested. The results showed that the target fragments of CPV VP2 gene (253 bp), CCoV ORF-1b gene (379 bp) and CRV VP6 gene (852 bp) could be accurately amplified by the triple PCR method with high specificity, the detection limits of CPV, CCOV and CRV were 6.44x10-1 pg/L, 8.72x10-1 pg/L and 8.35x10-1 pg/L respectively with high sensitivity, and the method had good stability. Using this triple PCR method, 135 canine diarrhea fecal samples collected in Chengdu region from 2019 to 2020 were detected, and compared with those of single PCR method. The detection rates of CPV, CCoV and CRV were 16.30%, 20.74% and 4.44%, respectively, and the total infection rate was 51.11% (65/135) with 20.00% (13/65) co-infection rate. The detection results were consistent with three single PCR methods. In conclusion, CPV/CCoV/CRV triple PCR method successfully established in this paper can be applied as an effective molecular method to detection of related pathogens and to the epidemiological investigation.

2.
Acta Agriculturae Zhejiangensis ; 34(3):457-463, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-20240064

ABSTRACT

To establish a method for simultaneous detection of porcine circovirus type 2 (PCV2) and porcine circovirus type 3 (PCV3), specific primers and TaqMan probes were designed after sequence alignment according to the specific sequences of PCV2 Cap gene and PCV3 Cap gene on GenBank. By optimizing the reaction conditions, a duplex fluorescence quantitative PCR detection method for simultaneous detection of porcine circovirus type 2 and 3 was established, and the specificity, sensitivity, and reproducibility were tested. Specificity test results showed that in addition to the positive test results for PCV2 and PCV3, tests for PRRSV, CSFV, PPV, PRV, PEDV, and TGEV were all negative with no cross-reaction, indicating its good specificity. Sensitivity test results showed that the minimum detection limit for detection of PCV2 and PCV3 can both reach 10 copies.L-1, indicating its high sensitivity. The coefficient of variation within and between groups of this method was less than 2%, indicating its good stability. A total of 181 pork and whole blood samples collected from Zhejiang Province were tested using the detection method established in this article and the standard common fluorescent PCR detection method. The results showed that the positive rate of PCV2 was 50.83% (92/181), the positive rate of PCV3 was 37.57% (68/181), and the co-infection rate of PCV2 and PCV3 was 12.15% (22/181). The above detection results of ordinary fluorescent PCR were 50.28% (91/181), 36.46% (66/181), and the co-infection rate was 11.60% (21/181). The coincidence rates of the two methods for PCV2 and PCV3 can reach 98.91% and 97.06%, and the coincidence rate for PCV2 and PCV3 mixed infection were 95.45%. In summary, the duplex fluorescence quantitative PCR detection method established in this experiment can distinguish PCV2 and PCV3 rapidly, which can be used for pathogen detection and epidemiological investigation.

3.
Silent superbug killers in a river near you: how factory farms contaminate public water courses on three continents 2021 39 pp ; 2021.
Article in English | CAB Abstracts | ID: covidwho-20239768

ABSTRACT

Water downstream from factory farms harbours an invisible threat to people's health which could eclipse the COVID-19 crisis. The threat? Antibiotic Resistance Genes (ARGs) which are driving antimicrobial resistance the world's superbug crisis - projected to kill up to 10 million people annually by 2050. This publication reports the presence of ARGs in animal waste discharged from industrial farms into public waterways or onto soil (or crops) in four countries. Gauge community impact and sentiment regarding the issue was also highlighted. The water and sediment from public water courses connected to effluent discharges from 6-10 pig farms were tested in each of four countries (Canada, Spain, Thailand and the USA).

4.
Zhongguo Yufang Shouyi Xuebao / Chinese Journal of Preventive Veterinary Medicine ; 44(11):1135-1141, 2023.
Article in Chinese | CAB Abstracts | ID: covidwho-20238997

ABSTRACT

Previous studies have revealed that developmental regulated brain protein (Drebrin) is involved in cell- to-cell communication, nerve transmission, tumor metastasis, spermatogenesis and other life activities, but there are few studies on viruses. The aim of the current research was therefore, to study the function of Drebrin and its effect on the proliferation of porcine epidemic diarrhea virus (PEDV). The Drebrin gene was cloned according to the Drebrin gene sequence (XM_008015438.2) of Chlorocebus sabaeus registered by GenBank, and the phylogenetic tree was constructed to analyze its homology. The results showed that the CDS region of Vero cells Drebrin gene was 2088 bp long, encoding 695 amino acids, and was relatively conserved and had high homology with all species. To investigate the effect of Drebrin on the proliferation of PEDV in Vero cells, the eukaryotic expression vector pcDNA3.1-Drebrin-Flag was constructed. After transfection of Vero cells with different concentrations of pcDNA3.1-Drebrin-Flag, cells were infected with PEDV. Our results showed that overexpression of Drebrin in Vero cells could significantly inhibit the intracellular PEDV mRNA level and N protein expression, reduce the extracellular virus titer and inhibit the proliferation of PEDV. Further study on the interaction between Drebrin and PEDV S proteins by laser confocal technique was also performed. The results showed that Drebrin and S protein were co-located in the cytoplasm, suggesting that the two proteins may interact with each other. This study demonstrated for the first time that Drebrin can inhibit PEDV proliferation in Vero cells, laying a foundation for further research in to Drebrin function and provides a valuable information for anti-PEDV research.

5.
Zhongguo Yufang Shouyi Xuebao / Chinese Journal of Preventive Veterinary Medicine ; 44(11):1189-1195, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-20238824

ABSTRACT

To develop a multiplex fluorescent quantitative RT-PCR for the detection of porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV) and swine acute diarrhea syndrome coronavirus (SADS-CoV), in this study, specific primers/probes were designed based on the conserved regions of M, M and N gene sequences of PEDV, PDCoV and SADS-CoV, respectively. After optimization of the reaction conditions, a multiplex fluorescent quantitative RT-PCR for PEDV, PDCoV and SADS-CoV was established. The results of specificity assay showed that the method was positive for detection of PEDV, PDCoV and SADS-CoV, and negative for detection of porcine transmissible gastroenteritis virus, porcine rotavirus, porcine reproductive and respiratory syndrome virus, porcine pseudorabies virus, porcine circovirus type 2, porcine parvovirus, classical swine fever virus and foot-and-mouth disease virus. The results of sensitivity assay showed that the detection limit of this method for PEDV, PDCoV, and SADS-CoV plasmids standard was 1.0x101 copies/L, and had a good linear relationship with their Ct values in the range of 101 copies/L to 106 copies/L. The results of repeatability assay showed that the coefficients of variation (CVs) of intra- and inter-assay reproducibility ranged from 0.33% to 2.53%, indicating good repeatability and stability. To evaluate the effects of the developed method, 100 clinical samples collected from different parts of Henan province were used for detection of these three viruses and compared with those of single RT-PCR and standard methods. The results of multiplex fluorescent quantitative RT-PCR showed that the positive rates of PEDV, PDCoV and SADS-CoV were 38% (38/100), 14% (14/100) and 5% (5/100), respectively. There was no mixed infection. The coincidence rate with the standard detection methods of PEDV and PDCoV was 100%, and the sensitivity was higher than that of single RT-PCR. In this study, a specific, sensitive and rapid multiplex fluorescent quantitative RTPCR method was established for the first time, which could be used for the differential detection of PEDV, PDCoV and SADS-CoV, and laid a foundation for the differential diagnosis and control of porcine diarrheal diseases.

6.
Koomesh ; 24(6), 2022.
Article in Persian | CAB Abstracts | ID: covidwho-20231716

ABSTRACT

Introduction: Covid-19 epidemic results from an infection caused by SARS-CoV2. Evolution-based analyses on the nucleotide sequences show that SARS-CoV2 is a member of the genus Beta-coronaviruses and its genome consists of a single-stranded RNA, encoding 16 proteins. Among the structural proteins, the nucleocapsid is the most abundant protein in virus structure, highly immunogenic, with sequence conservatory. Due to a large number of mutations in the spike protein, the aim of this study was to investigate bioinformatics, expression of nucleocapsid protein and evaluate its immunogenicity as an immunogenic candidate. Materials and Methods: B and T cell epitopes of nucleocapsid protein were examined in the IEDB database. The PET28a-N plasmid was transferred to E. coli BL21(DE3) expression host, and IPTG induced recombinant protein expression. The protein was purified using Ni-NTA column affinity chromatography, and the Western blotting method was utilized to confirm it. Finally, mice were immunized with three routes of purified protein. Statistical analysis of the control group injection and test results was carried out by t-test from SPSS software. Results: The optimized gene had a Codon adaptation index (CAI) of 0/97 Percentage of codons having high- frequency distribution was improved to 85%. Expression of recombinant protein in E. coli led to the production of BoNT/B-HCC with a molecular weight of 45 kDa. The total yield of purified protein was 43 mg/L. Immunization of mice induced serum antibody response. Statistical analysis showed that the antibody titer ratio was significantly different compared to the control sample and the antibody titer was acceptable up to a dilution of 1.256000. Conclusion: According to the present study results, the protein can be used as an immunogenic candidate for developing vaccines against SARS-CoV2 in future research.

7.
Zhongguo Yufang Shouyi Xuebao / Chinese Journal of Preventive Veterinary Medicine ; 44(10):1076-1083, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-2323056

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV), a newly discovered enteric coronavirus, is the etiological agent that causes severe clinical diarrhea and intestinal pathological damage in piglets. In this study, Vero E6 and IPI-2I cells were pretreated with different concentrations of glycyrrhizin (GLY) for 2 hours, and then infected with different concentrations of SADSCoV, aiming to investigate the inhibitory effect of GLY on SADS-CoV. Western blot and TCID50 results revealed a significantly decreased N protein expression and viral titer, indicating that GLY can inhibit the infection of SADS-CoV. Vero E6 and IPI-2I cells were pretreated with different concentrations of GLY for 2 hours and infected with SADS-CoV. Western blot results showed that when the concentration of GLY was 0.8 mmol/L, the expression of N protein decreased significantly, indicating that GLY inhibited the invasion of the virus. At first, cells were treated with 0.4 mmol/L GLY, and cell samples were collected at 2 hours, 6 hours and 12 hours after being infected with SADS-CoV for analysis, and the expression of N protein were found to be significantly reduced at all points, indicating that GLY had a significant inhibitory effect on the replication of the virus. GLY is a competitive inhibitor of high mobility group box 1 (HMGB1), and the receptors of HMGB1 mainly include TLR4 and RAGE. Based on this fact, the mutant plasmid at the key sites of HMGB1 (C45S, C106S, C45/106S) and the siRNA of the RAGE receptor were transfected to Vero E6 cells and infected with SADS-CoV, and the cell supernatant and samples were harvested. The western blot and TCID50 results showed that the expression of N protein and the virus titer were decreased, suggesting that GLY exerts its function by affecting the binding of HMGB1/TLR4/RAGE during SADS-CoV infection. To further explore the signaling pathway through which GLY functions, Vero E6 and IPI-2I cells were inoculated with SADS-CoV, and cell samples were harvested, western blot was used to detect the changes of MAPK proteins. The results showed that the protein expression levels of p-p38, p-JNK and p-ERK were up-regulated in the early and late stages, indicating that the MAPK pathway was activated by SADS-CoV infection. Vero E6 and IPI-2I were pretreated with different concentrations of GLY and TLR4 inhibitor TAK for 2 hours and infected with SADS-CoV. Protein samples were harvested and analysed by western blot which showed a decreased p-JNK and N proteins, while other proteins showed no significant changes. These results indicated that GLY and TAK regulated the phosphorylation of JNK but did not regulate the phosphorylation of p38 and ERK. Also, Vero E6 cells were treated with HMGB1 antibody, the siRNA of HMGB1 and HMGB1 mutants plasmid, and infected with SADS-CoV. Protein samples were harvested, western blot results showed that phosphorylation of JNK decreased, indicating that HMGB1 affected JNK phosphorylation. Finally, Vero E6 and IPI-2I cells were pretreated with different concentrations of JNK inhibitor SP600125 to infect SADS-CoV, western blot, TCID50 and IFA results showed that the expression of N protein and virus titer, as well as virus replication were reduced, indicating that SP600125 inhibited virus replication. In conclusion, our results revealed that GLY can inhibit in vitro replication of SADS- CoV, mainly through the HMGB1/TLR4/JNK signaling pathway. The discovery of this pathway provides theoretical support for the research of novel anti-SADS-CoV drugs.

8.
Zhongguo Yufang Shouyi Xuebao / Chinese Journal of Preventive Veterinary Medicine ; 44(10):1059-1065, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-2327435

ABSTRACT

Bovine rhinitis virus (BRV) is an important pathogen responsible for the bovine respiratory disease complex (BRDC) and can be divided into two genotypes (BRAV and BRBV). To establish a duplex quantitative real-time RT-PCR assay for simultaneous detection of BRAV and BRBV, specific primers and TaqMan probes targeting the 5'NTR of BRAV and 3'NTR of BRBV were designed. A duplex quantitative real- time RT- PCR assay for simultaneous detecting BRAV and BRBV was preliminarily established by optimizing reaction conditions for each step. The assay specifically detects BRAV and BRBV, and no crossreaction with other common bovine respiratory pathogens, including IDV, BCoV, BVDV-1, BRSV, BPIV-3, BAdV-3, mycoplasma bovis, Pasteurella multocida, Mannheimia haemolytica, Escherichia coli, and Salmonella, was observed. In addition, the sensitivity test showed that the detection limits of this assay were 3.2x101 copies/L for both BRAV and BRBV plasmid standards. Besides, the repeatability test showed that the variation coefficients of this assay were less than 0.05 from both lot-to-lot and intra-lot. These results showed that the assay has high specificity, extreme sensitivity, and good repeatability. Moreover, a total of 43 nasal swabs of BRDC cattle were tested by our assay and four other quantitative real-time RT-PCR assays, including 3 BRAV assays and 4 BRBV assays. The results showed that the detection rates of our assay were 32.56%(14/43) for BRAV and 30.23%(13/43) for BRBV, and the detection rates of other quantitative real-time RT-PCR assays were 0(0/43), 2.33%(1/43), 23.26%(10/43) for BRAV and 27.91% (12/43), 27.91%(12/43), 27.91%(12/43), 27.91%(12/43) for BRBV, indicating that our assay has a more substantial detection capability than other assays. This study firstly established a duplex quantitative real-time RT-PCR assay for simultaneous detection of BRAV and BRBV, and the assay exhibited high specificity, sensitivity, and stability. Moreover, the study firstly confirmed the existence of BRAV in China, contributing to the prevention and control of BRDC.

9.
Fujian Journal of Agricultural Sciences ; 37(11):1388-1393, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-2316627

ABSTRACT

Objective: Epidemiology and genetic variations of the infectious bronchitis virus(IBV) in Fujian province were studied. Method: Two strains of virus isolated from the diseased chickens in Fujian in 2021 were identified by chicken embryo pathogenicity test, electron microscope observation, and RT-PCR. S1 genes of the isolates were cloned, sequenced, and analyzed using biological software. Result: The two IBV strains were code named FJ-NP01 and FJ-FZ01. The full length of S1 of FJ-NP01 was 1 629 nt encoding 543 amino acids, and that of FJ-FZ01, 1 620 nt encoding 540 amino acids. The S1 gene cleavage site of FJ-FZ01 was HRRRR, same as all reference strains of genotype I branch;while that of FJ-NP01 HRRKR differed from the reported site of IBV isolated from genotype IV but same as that of TC07-2 reference strain of genotype VI. The homology of nucleotide and amino acid between the two isolates was 83.2% and 79.6%, respectively, but merely 75.7%-76.3%and 77.1%-83.5% with the Mass-type conventional vaccines H120 and H52, respectively. Further analysis showed that FJ-NP01was from a recombination event between CK CH GD LZ12-4 and L-1148, the homology of nucleotide acid between 1438-1506 nt of FJ-NP01 with CK CH GD LZ12-4 was 97%, and 95.9% between the other nucleotide acid of S1 gene with L-1148. Conclusion: It appeared that the IBV epidemic experienced in the province was complex in nature and that the existing Mass vaccines would not provide sufficient immune protection to deter the spread.

10.
Southwest China Journal of Agricultural Sciences ; 36(2):427-434, 2023.
Article in Chinese | CAB Abstracts | ID: covidwho-2316572

ABSTRACT

[Objective] Using the bimolecular fluorescence complementation (BiFC) technology, the present experiment aimed to study the interaction relationship and localization of the target peptide and the complementary peptide based on the porcine epidemic diarrhea virus (PEDV) S protein receptor binding site peptide in living cells, so as to provide the foundation and theoretical support for the further use of the peptide in the detection of porcine epidemic diarrhea virus. [Method] The target peptide was designed according to the physical and chemical characteristics of the target protein, such as the amino acid composition, the type of charge, the ability to form intennolecular hydrogen bonds, the strength of polarity, and hydrophobicity;According to the amino acid composition of the target protein, a complementary peptide that interacted with it in theory was designed, and the target peptide and complementary peptide were predicted and analyzed by using bioinfonnatics tools;The target peptide and complementary peptide were inserted into the pBiFC-VC155 and pBiFC-VN173 vector, which was double digested by the EcoRI/XhoI and NotI/SalI, respectively, verified by enzyme digestion and sequencing, and then transfected into Vero cells to study the interaction between the target peptide and the complementary peptide, and the precise localization of BiFC complex in cells. [Result] Bioinfonnatics analysis showed that the target peptide and complementary peptide had hydrophilic and hydrophobic domains, respectively, and the hydrophilic domains were both positively and negatively charged, which could generate electrostatic attraction. The results of enzyme digestion and sequencing showed that the pBiFC-VC155-target peptide and pBiFC-VNI73-complementary peptide plasmids were successfully constructed;Cell transfection experiments showed that the target peptide and complementary peptide could form BiFC complexes in Vcro cells after co-transfection of recombinant plasmids, indicating that they could interact with each other;Indirect immuttolluorescence assay confirmed that the BiFC complex was mainly distributed in the nucleus. [Conclusion] It was confirmed that the peptide designed based on the PEW/ S protein receptor binding site can interact with each other in living cells, demonstrating the feasibility of the peptide for detection.

11.
Jundishapur Scientific Medical Journal ; 21(2):176-193, 2022.
Article in English | CAB Abstracts | ID: covidwho-2314819

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an acute respiratory infection. Its virus called SARS-COV-2 which is an RNA virus with high homology to the bat coronavirus. In this review study, first the molecular and cellular characteristics and the proliferation and replication of SARS-COV-2 are investigated. Then, by reviewing bioinformatics studies regarding protected domain analysis, homology modeling, and molecular docking, the biological role of some specific SARS-COV-2 proteins are examined. The results showed that the open reading frame 8 (ORF8) and surface glycoprotein could bind to porphyrin. At the same time, ORF1ab, ORF10, and ORF3a can attack the heme part of hemoglobin to dissociate iron and form porphyrin. This attack reduces hemoglobin ability to carry oxygen and carbon dioxide. As a result, lung cells become severely inflamed due to their inability to exchange carbon dioxide and oxygen, which leads to large ground-glass opacities on CT scan images. Based on the bioinformatics results, chloroquine can prevent ORF1ab, ORF3a, and ORF10 from attacking hemoglobin to form porphyrin and avoid the binding of ORF8 and surface glycoprotein to porphyrin, which effectively relieves the symptoms of acute respiratory syndrome. In the current pandemic, bioinformatics studies are of great importance for preventing the spread of COVID-19, developing drugs and vaccines, and clinical practice.

12.
Fujian Journal of Agricultural Sciences ; 37(11):1381-1387, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-2313599

ABSTRACT

Objective: A Taq Man probe-based duplex real-time PCR for rapid detection of porcine epidemic diarrhea virus(PEDV) and transmissible gastroenteritis virus(TGEV) was developed. A study was conducted using the methodology to analyze the related 2019-2021 epidemic occurred in Fujian. Method: Specific primers and probes labeled with FAM and VIC were designed to amplify the N gene of PEDV and the S gene of TGEV, respectively. A reaction system for the assay was established, optimized, and tested for sensitivity, specificity, and repeatability. The assay was used for the viral detection on297 suspected clinic specimens collected from 2019 to 2021 for an epidemiology study. Result: The newly developed duplex qPCR methodology showed a sensitivity of 10 copies.L-1 on PEDV and TGEV, which was 100 times higher than that of regular PCR. There were no cross reactions with other common viruses. The inter-and intra-assays had variations on Ct values below 1%. On the 297 specimens, the infection rate of PEDV was 88.89%, that of TGEV 1.01%, and that of both PEDV and TGEV 3.37%. Conclusion: The established duplex qPCR had high sensitivity, specificity, repeatability, and reproducibility for detecting PEDV and TGEV. The 2019-2021 epidemic involving the viruses appeared to be mostly PEDV with low incidents of mixed TGEV and PEDV/TGEV infection.

13.
Zhongguo Yufang Shouyi Xuebao / Chinese Journal of Preventive Veterinary Medicine ; 44(9):921-926, 2022.
Article in English, Chinese | CAB Abstracts | ID: covidwho-2313055

ABSTRACT

In order to perform the isolation of avian infectious bronchitis virus (IBV) and study the pathogenicity of IBV isolate, the RT-PCR was used to detect nucleic acid extracted from a clinical sample of chickens, which were suspected to be infected with infectious bronchitis virus (IBV) and provided by a farmer in Yuncheng, Shanxi province. And the sample was detected as IBV positive by RT-PCR. Then 9-11-day-old SPF chicken embryonated eggs were inoculated with the sample filtered from the grinding fluid, and the obtained allantoic fluid was blindly passed by three generations (F3) and was also tested as IBV positive;The F11 generation passaged in embryonated eggs caused typical "dwarf embryo" lesions to SPF chicken embryonated eggs, and induced the loss of cilia in tracheal rings. The results showed that an IBV strain was isolated and named as YC181031. The S1 gene amplification and sequencing analysis showed that YC181031 strain belonged to IBV GI-22 genotype, which is also nephropathogenic type IBV. Seven-day-old SPF chicks were used to test the pathogenicity of the isolate. The results showed that several clinical symptoms were showed in chicks infected with YC181031, such as breathing with difficulty, depression, excreting watery droppings and death. The mortality of infected chicks was 20%. Typical pathological changes such as enlargement of kidney and urate deposition in the kidney were observed in infected chicks. The immunohistochemical assay and viral load detection were performed for the tissue samples from infected and dead chicks. The tissue lesions and distribution of virus were observed in the kidney, trachea, lung, glandular stomach, spleen and liver samples of infected chicks. RT-PCR detection of pharyngeal anal swabs showed that the virus shedding by infected chicks could be continuously detected within 14 days of the test period;The viral loads of various tissues were detected by RT-qPCR and the results showed that the viral load from high to low was kidney, trachea, lung, stomach, spleen and liver. The viral load of kidney was significantly higher than that of other tissues (P < 0.05).In this study, the pathogenicity characteristics of GI-22 genotype strain were systematically studied for the first time, providing a reference for the prevention and treatment of the disease.

14.
Egyptian Journal of Chemistry ; 65(13 (Part A):1241-1248, 2022.
Article in English | CAB Abstracts | ID: covidwho-2312106

ABSTRACT

Background: Reports showed presence of SARS-CoV-2 genetic material in wastewater. Wastewater concentration methods are optimized for detection of non-enveloped viruses so need to be adopted for enveloped viruses and their genetic material. Methods: Conventional (cRT-PCR) and quantitative real time RT-PCR (qRT-PCR) were used as readouts to compare 4 water concentration methods namely, (A) filtration on negatively charged membrane followed by extracting RNA from it, (B) adsorbtion-elution method, (C) flocculation with skimmed milk and (D) polyethylene glycol precipitation, to detect SARS-CoV-2 RNA and 229E human coronavirus (229E-HCoV) as a model for spike-containing enveloped virus from fresh and wastewater. Results: On using cRT-PCR: recovery rate of SARS-CoV-2 RNA was better using method A then B for fresh water and method B then D for wastewater. 229E-HCoV recovery from fresh water was better using method C then A and methods B then D for wastewater. On using qRT-PCR, both methods A and B were better for SARS-CoV-2 RNA recovery from both fresh and wastewater. For the 229E-HCoV methods A was the most efficient for fresh water and method B for wastewater. Conclusion: Method B is recommended for SARS-CoV-2 RNA or whole 229E-HCoV recovery from wastewater.

15.
Journal of Mazandaran University of Medical Sciences ; 32(217):16-31, 2023.
Article in Persian | CAB Abstracts | ID: covidwho-2295750

ABSTRACT

Background and purpose: The sequence of Omp25 is conserved in all Brucella species. The high antigenicity of the product of this gene stimulates the host's immune system. Using engineered probiotic bacteria is an appropriate method for vaccine transport. The aim of this study was to express the Omp25 of the Brucella abortus pathogenic bacterium in Lactococcus lactis probiotic bacterium. Materials and methods: In this experimental study, the required vector was designed and synthesized to include the gene of interest and a signal peptide (pNZ8148-Usp45-Omp25). E. coli strain TOP10F was transformed using the pNZ8148-Usp45-Omp25 expression vector based on induction by nisin. The recombinant plasmid was extracted from the transformed bacteria using a plasmid extraction kit. The L. lactis was transformed by pNZ8148-Usp45-Omp25 vector using electroporation. Evaluation of the expression of Omp25 gene at the RNA level was assessed by reverse transcription method and confirming the presence of recombinant Omp25 protein in the engineered bacteria using SDS-PAGE method. Results: Successful expression of B. abortus Omp25 in L. lactis was verified by RT-PCR. Subsequently, the proteins were separated based on molecular weight using sodium dodecyl sulfate- polyacrylamide gel electrophoresis (SDS-PAGE). The protein expression analysis showed the expression of Omp25 as a 25 kDa extra band in transformed L. lactis compared to the L. lactis receiving the vector lacking the target gene. Conclusion: This study shows that Omp25 is expressed in L. lactis transformed via pNZ8148-Usp45-Omp25 by electroporation. Transformed L. lactis can be successfully used as a subunit oral vaccine in prevention of Brucellosis.

16.
Journal of Yunnan Agricultural University ; 37(5):790-798, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-2275509

ABSTRACT

Purpose: To investigate the epidemic variation of porcine epidemic diarrhea virus (PEDV) strains in Sichuan Province, and to analyze the causes of poor vaccination effect. Methods: Piglet intestinal samples were collected from a pig farm in Sichuan Province for PCR detection, virus purification, determination of virus titer and virus infection experiments. Whole genome sequencing of isolated strains was determined. The S gene sequence of the isolated strain was compared with the strains from other regions and vaccine strains, and the phylogenetic tree was established. The amino acid site variation of S protein between the isolated strain and the classical vaccine strain CV777 was compared. Results: A PEDV strain was successfully isolated and named as PEDV SNJ-P. The determination of virus titer was 1..107.5/100 L. Animal infection experiments showed that the isolated strain could cause diarrhea, dehydration and other symptoms and lead to death in piglets. Genome sequencing and phylogenetic tree analysis showed that the whole gene of PEDV SNJ-P strain was 28003 bp, and the genotype of the strain was S non-INDEL type. The strains were closely related to the strains of PEDV-WS, CH/JLDH/2016 and CH/HNLH/2015 isolated from China, and were relatively distant with the same type vaccine strain, and were far from the classical vaccine strain. Compared with the classical vaccine strain CV777, the S protein of SNJ-P strain had multiple amino acid mutations, deletions and insertions. Conclusion: Due to the continuous variation of strains, SNJ-P strain is far from the vaccine strain, and the current vaccines cannot provide effective protection. The results of this study are expected to provide reference for the study of PEDV strains and vaccine development in China.

17.
Japanese Journal of Zoo and Wildlife Medicine ; 27(2):111-118, 2022.
Article in Japanese | CAB Abstracts | ID: covidwho-2274750

ABSTRACT

Against a pandemic of emerged infectious disease, COVID-19, new generation vaccines based on nucleic acids or recombinant viruses, which had not been used as vaccines in humans, have been inoculated and shown to be successful. They are, however, heat-labile and need a cold-chain including deep-freezers for storage and transportation. Vaccinia virus (VAC) vector vaccine (VACV) is a pioneer of new generation of vaccines constructed by using molecular biological technology. VACV, which has contributed to eradication of smallpox, has excellent characteristics of vaccinia virus such as a high heat-stability and long-lasting immunological effects. It is possible to distinguish the immunological responses of vaccination from those of natural infections. We started our developmental researches 35 years ago, using attenuated VAC strains established in Japan. In this article, we first describe the early researches of VACVs;development of two VACVs for Bovine leukemia virus and Rinderpest morbillivirus antigens and their protective immunity in large mammals, sheep and cows. Second, application of VACV is described;Rabies-VACV, which has already been licensed, used in the field in Europe and USA, and resulted in a prominent decrease of rabies. Then, current status of VACV research is described;non-replicating VACVs in mammalian cells have been developed as new-generation and ultimately-safe vaccines. We discuss the possibility of future application of VACV for wildlife.

18.
Veterinarstvi ; 72(11):638-642, 2022.
Article in Czech | CAB Abstracts | ID: covidwho-2269523

ABSTRACT

Infectious peritonitis virus (FIPV) causes a fatal disease in cats. This virus occurs both in cats bred in households with optimal welfare and outdoor cats. Feline patients with the effusive form of disease usually survive a few days to weeks from the appearance of the first clinical signs. Cats with the non- effusive form survive for weeks to months. FIPV is caused by a mutation from feline enteric coronavirus (FECV). In our study, we diagnosed feline coronavirus from the feces of 82% of the tested cats. The persistence of the feline coronavirus in the organism is influenced by environmental factors, the genome of the host and the causative agent. Negative environmental conditions that increase the likelihood of FIPV disease are long-term stress, mainly more labile individuals and a high concentration of domesticated cats in one place. In the host, there are important factors such as immune system performance, age, breed and genetic background. In our study, we primarily verified the real time RT-PCR method for identifying the virus from the feces of 71 cats and subsequently gaine the valuable data on the dynamics of feline coronavirus excretion, primarily for epizootological purposes and for the purposes of genetic analyzes of susceptibility to infection.

19.
Proceedings of the 68th Annual Convention of the American Association of Equine Practitioners, San Antonio, Texas, USA ; : 60-61, 2022.
Article in English | CAB Abstracts | ID: covidwho-2268099

ABSTRACT

Horses may act as incidental host and experience silent infection following spillover from humans with COVID-19. SARS-CoV-2-infected humans should avoid close contact with equids during the time of their illness.

20.
Pathogens ; 9(5), 2020.
Article in English | CAB Abstracts | ID: covidwho-2265171

ABSTRACT

The Open Reading Frame 3 (ORF3), an accessory protein of porcine epidemic diarrhea virus (PEDV), has been shown to interact with a myriad of cellular proteins, among which include the IB kinase beta (IKBKB). Here, specific IKBKB domains responsible for ORF3-IKBKB interaction were identified. Dysregulation of NF-B and Type I interferon (IFN) in the presence of ORF3 was also demonstrated. We showed that while ORF3 was capable of up-regulating IKBKB-meditated NF-B promoter activity, it surprisingly down-regulated the activation of IKBKB-meditated IFN-beta promoter and expression of IFN-beta mRNA. When overexpressed, ORF3 could suppress Poly I:C mediated type I IFN production and induction. Finally, we demonstrated that IKBKB- and RIG-I-mediated type I IFN induction by ORF3 resulted in different outcomes. Our study is the first to demonstrate the potential and complex roles of ORF3 in the involvement of aberrant immune signaling as well as in the virus-host interaction.

SELECTION OF CITATIONS
SEARCH DETAIL